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SUMMARY 

This report contains a collection of new results, both qualitative and quantitative, 
concerning the nature of propagation of waves of finite amplitude in thermoviscous 
media; with particular attention to piston-driven propagation. The vehicle for the 
analysis is Burgers’ equation, for which an appropriate boundary value problem is 
solved. Several critical nonlinear quantities are defined and discussed; criteria for 
the appearance of shocks are given; a generalized analytic explanation of the nature 
of nonlinear diffusion is given. An explicit quantitative solution for piston-driven 
propagation, also given here, is shown to contain, as a special case, Fay’s result 
(R.D. Fay, J. Acoust. Sot. Am. 3,222 (1931). 
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FOREWORD 

This Technical Report contains several new results of fundamental importance, concerning 
one dimensional viscous fluid flow in general, and piston-driven excitation in an infinite 
pipe in particular. Because of the limited time allotted to this research and because of the 
unusually large number of new results obtained it was impossible, in several cases, to 
delve deeply into the implications of the results achieved. However, the delicate line 
which had to be drawn therefore between fundamental result and its basic meaning on the 
one hand, and the particular application of this result on the other, was constructed, 
in such a way, that the omissions of the former should fall into the realm of basic research, 
while the latter could be expanded by a modest and well-defined effort. In this Foreword 
we are including, therefore, those achievements which are immediately applicable in 
either a qualitative or quantitative sense, but we are reserving for the last section the 
enumeration of such aspects of our results as require further basic study. 

It will be convenient to discuss the achievements contained in each section, in the order 
of their appearance. Thus, we shall go through the entire contents of the Report, 
underlining the parts which are both new and important. 

1 .o 

2.0 

3.0 

4.0 

5.0 

6.0 

This introductory section gives a general overview of the problems dealt with, 
their history and present knowledge concerning them. 

We are giving here the derivation (in fact, two derivations) of the equation 
that is used as the analytical predictor. The approach selected points almost 
automatically to the next higher order equation which awaits a “third 
generation” solution. The question of Iossless fluids is also touched upon. 

An energy relationship is obtained in Section 3.0 for the analytical vehicle, 
which is Burgers’ equation. An explicit and complete solution of this equation, 
together with a general discussion and the description of the initial value 
problem for the equation are also given. 

Because of its great importance, at least two research workers tried recently 
to solve the boundary value problem for Burgers’ equation. Section 4.0 
discusses the reason why the approach of these two workers is entirely fallacious. 
A more detailed discussion of this is given in Appendix B. 

- 

Here an analytic description of the boundary value problem, connected with the 
motion of a piston in a fluid, i.s given. The discussion is restricted to at most 
sonic piston velocities. An approximation of the resulting complicated boundary 
condition is derived, together with a definite estimate of the order of this 
approximation. 

Formula (38) of Section 6.0 gives the most general solution for the piston 
problem, under the approximations of the previous section. A new, 
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distinctly nonlinear quantity (termed the “impulse of interacting energy”) is 
defined in formula (41); it represents the nature of the nonlinear and diffusive 
interactions. Its basic building block is the “determinant of nonlinear diffusion”, 
defined by (40). Some conclusions are also drawn at this point concerning the 
validitv of assumina the constancv of the dissioation number 8. Other results of 

I 

this se&ion include the definitioi of three analytic conditions for the appearance 
of shocks; and the attainment of the very easily analyzable formula (47), 
derived from (38), which is the simplest quantitative description of piston- 
driven particle velocity in a thermoviscous medium. 

7.0 Since one of the most important cornerstones in nonlinear acoustical theory was 
the classical paper of Fay of 1931, the reduction of our formula (47) to Fay’s 
result was considered an important verification of our theory. Thus, Fay’s 
solution is obtained, as a very special case of our results, in formula (50) of 
this Section. 

8.0 According to linear diffusion theory any waveform will dissipate itself with 
time. While this is a highly gratifying result, there is no logical reason why 
time itself should act as a diffusing agent of some sort. This consideration is 
the one that can put in proper focus the importance of the discovery to which 
Section 8.0 ip devoted: an analytical explanation of the nature of diffusion, 
represented by formula (54). The formula reduces, in a limiting case, to a 
description (a time - exponential ); but since, in fact, every wave motion is 
of finite amplitude, (54) can be taken as a new physical law. 

9.0 In order to gain a better insight of the complicated formula (38), Section 9.0 
discusses the time independent solutions of (12). Two critical oarameters. . , 
important for piston driven propagation, are defined and discussed. 

10.0 This section is devoted to the presentation of some graphical data, supporting 
and clarifying the time independent solution. 

APPENDICES 

Appendix A constitutes the rigorous mathematical background for many of the 
results presented in this report. Appendix B, on the other hand, discusses in 
detail the reasons why some recent attempts at obtaining the type of results 
presented here are actually fallacious. Thus, this Appendix is an extension of 
Section 4.0. 
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1 .o INTRODUCTION 

Two of the most important problems in the theoretical study of the propagation of 
waves of finite amplitude are the postulation of appropriate equations on the one hand, 
and the formulation of meaningful boundary and initial conditions for them, on the 
other. 

In setting up, or deciding on the equations which are to describe the phenomena to be 
encountered, one has to keep constantly in mind that there are no so-called “exact” 
equations; every equation involves a certain degree of approximation. One has to 
compromise therefore : starting from basic principles, an equation, or a set of 
equations, has to be arrived at; such that it contains most of the significant features 
of the particular physical situation being analyzed and yet is not beyond present 
mathematical techniques. Thus, for instance, the equation designed to describe the 
propagation of finite amplitude waves, in air of variable temperature and variable 
composition (humidity), must at least be nonlinear and must also account for heat 
dissipation. 

The formulation of a general, yet analyzable, boundary and/or initial value statement 
is equally important; for without it almost everything else has merely academic 
importance. To be sure, one can in many cases make general qualitative statements 
about the phenomena described, even under idealized boundary conditions. If one 
is interested, however, in more specific statements or in actual quantitative answers, 
then a way must be found to formulate boundary and/or initial conditions which are 
descriptions of physically realizable and experimentally feasible situations. 

In 1948, as part of an attempt to explain the nature of turbulence, Burgers [ 1 ] 
introduced a time-dependent partial differential equation, which was both nonlinear 
and also contained a second order viscous term. The equation bore a striking inherent 
resemblence to the one dimensional Navier-Stokes equations; and, as it later turned 

outL21, [31, [41, [5l,t i was very significant from a statistical point of 
view also. Therefore, the equation seems to describe phenomena which can have both 
deterministic and probabilistic interpretations. An example would be the interaction 
of shocks in a thermoviscous medium. 

The circumstance that made this equation truly significant was the discovery of its 
complete and explicit solution. This was accomplished by Hopf in 1950 [ 6 ] 
and by Cole in 1951 [ 7 ] , independently of each other. Hopf concentrated 

his efforts on the mathematical aspects of the solution, while Cole followed the 
solution up with its aerodynamical implications; although he regarded the equation 

more as an analogy, and not as theculmination of a sequence of approximations. 

Soon, however, this void was filled also. Lagerstrom, Cole and Trilling had 
previously (in 1949) provided the analysis [ 8 ] , which reduced the set of 
equations of motion and conservation relationships to Burgers’ equation. They did 
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this for viscous perfect gases. In 1953 , Mendousse [ 9 ] extended their 
analysis, to include viscous fluids of arbitrary equations of state. Lighthill 
provided the justification for the use of this equation in thermoviscous perfect gases 
[ 10 ] in the year 1956; this was extended by Hayes [ 11 ] in 1958 to thermo- 
viscous fluids of arbitrary equation of state. Finally, in 1962, Gol’dberg 
justified the use of Burgers’ equation for propagation in magnetically conductive 
thermoviscous perfect gases [ 12 ] . 

As we shall see later, a completely accidental peculiarity in the form of the 
solution of Burgers’ equation makes it very natural to consider an initial value 
problem. This would correspond to the description of how an already excited wave- 
form propagates and dissipates itself, under the mechanism of internal diffusion but 
with no outside forces acting on it. Because of this peculiarity and because of the 
lack of a solution for any true boundary value problem for Burgers’ equation, each 
one of the authors mentioned previously - and as far as we could determine, 
everyone else using this equation - considered the initial value problem only. 
However, to overcome this obvious defect, several of them transformed their 
equations into a moving frame of reference, with a space-like coordinate taking 
the place of the physical one. Mendousse [ 9 ] went even a step farther than 
this. He provided a rational approx;mation in which the form of Burgers’ equation 
remained essentially invariant, but where the physical coordinate replaced the 
time variable, while a time-like quantity (retarded time) took the place of the 
former. Based on this work, Blackstock [ 13 ] gave a solution for a quasi-boundary 
value problem; and also obtained a very elegant generalization of the classical 
solution of Fay [ 14 ] , who had considered propagation in a dissipative medium 
and obtained his solution for unspecified boundary conditions, through a series of 
approximations, starting from a completely different equation. 

While the qualitative agreement of these two solutions is quite remarkable, it is 
nevertheless subject to some suspicion. The reason for this is that both the equation 
used by Fay, and Burgers’ equation, have a strong connection with the linear heat 
equation. Rational approximations, therefore, would tend to go in a direction 
where the simplified expressions can be handled on better-known mathematical 
ground; in this case, the realm of the solutions of the heat equation. Specifically, 
Blackstock had utilized certain properties of the Jacobian Theta and Zeta functions 
(first connected to Burgers’ equation by Cole [ 7 1) . As is well known, the former 
are solutions of the heat equation, while the Zeta functions are just the logarithmic 
derivatives of the Theta functions. On the other hand, the basic linearization 
procedure employed by Fay led to classes of solutions which, for certain ranges of 
the variables, are also solutions of the heat equation. One would conclude, 
therefore, that the intersection of the two sets of solutions is the place to which 
the path of least resistance leads. This does not mean, however, that the set 
composed of the union less the intersection of the two solution sets is empty, or 
even small; indeed, the contrary is true. 



In the study here presented, however, a true boundary value problem is treated and 
analyzed. 

One of the vexing problems of this field of study is the specification of physically 
meaningful boundary conditions. On occasion this is quite straightforward: for 
instance, the fact that a rigid wall is a barrier for a fluid; or that in a viscous flow 
inside a pipe of finite diameter the flow velocity along the pipewalls vanishes, are 
both easily translatable conditions. On the other hand, suppose that a kind of 
excitation exists at a certain point in the fluid. For instance, suppose we have a 
“pipe” of infinite length and infinite diameter, and that a piston, of similar 
dimensions, excites the fluid. The question that arises is the following: just where 
is the locus of the excitation ? A clearly related problem is one where the fluid 
impinges on a “rigid” wall. The fact is that no wall is really rigid; and given a 
strong enough excitation, together with a wall of not too great strength, the question 
of where to prescribe a condition of zero velocity becomes one of great practical 
importance. Furthermore, there are occasions where the boundary conditions are 
well known, but cannot be used; since they are not applicable (mathematically) 
to the equation that has been decided upon. The paper of Blackstock [ 13 ] is an 
example here: for a detailed critique, see Appendix B. 

Here we shall be interested in the classical piston problem, as described in the 
preceding paragraph. We shall not solve the exact problem of propagation by a 
piston; this involves the question of how to apply boundary conditions, in one- 
dimensional flow, on an arbitrary curved boundary [ 15 ] , [ 16 ] , [ 17 ] ; a 
question beyond present mathematical techniques. We shall, however, give a 
second order approximation of the solution, valid for piston motion of arbitrary 
frequency and moderate amplitude. This itself represents an advance in the present 
state of the art. 

In classical analysis the occurrence of a (physical) shock corresponds to the existence 
of a (mathematical) characteristic. It is not surprising, therefore, that heretofore 
shock problems were considered only for first order flows, whose descriptors are 
essentially hyperbolic conservation laws. On physical grounds, however, one 
would want to say that even in a medium with thermoviscous properties, the 
appearance of shocks is a possi bi Ii ty; indeed, it is an observed phenomenon. 

Because of this consideration, we shall discuss the following problem: what type of 
excitation is necessary in thermally conducting and viscous media, in order to 
produce shocks 3 

Finally, as a by-product of our analysis, we shall discuss a unique feature of the 
solution. It is essentially a qualitative and comparative evaluation of the thermo- 
viscous mechanism, as measured against the type of excitation applied. We shall 
discuss this on general grounds and also in graphical form, to observe several significant 



- ._ . - . _ ~1- 

features. One of the conciusions is the verification of an observation [ 1 ] , 

1101 I [ 131 , that the assumption of a constant value for the description of 
thermoviscous effects is indeed a weak one. 
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2.0 THE GOVERNING EQUATION 

It is not the intention of this report to give the rational approximations leading to 
Burgers’ equation under the various physically important assumptions; this task has 
been accomplished, as we pointed out in the Introduction, for many kinds of fluids 
of interest. However, in order to remain in one fixed frame of reference, so that it 
will be possible to draw the appropriate physical consequences of the forthcoming 
analysis, we elected to treat thermoviscous perfect gases. This implies of course 
that our starting point is Lighthill’s analysis [ 10 ] ; but our results can be applied 
with equal ease to fluids obeying other laws, as mentioned in the Introduction. 

Let us start with equation (30) of Lighthill, at the stage where the governing 
equations have already been reduced to a pair of one dimensional equations, which 
are 

(1) v + 3’v + 
t X 

y-f-i- aax = e vxx 

at 
+ Go + y-l 

2 
aG =O. 

X X 

We shall use the subscript notation throughout for partial derivatives. In equations 
(1) and (2) v = v (x, t) is the particle velocity function, a = a (x, t) is 
the speed of an isentropic small-amplitude sound wave, y is the ratio of specific 
heats,and E is a positive constant representing the strength of the thermoviscous 
mechanism. In particular, 

(3) a = ” 2+++*. 
[ 1 

In this formula v is the kinematic viscosity, ‘1 and 11’ are shear and dilational 
viscosity numbers, respectively, while Pr is the Prandtl number. Dimensionally, 

the units of e are those of (length) (velocity) = ft2/sec, in the English system 
of units. The quantity a is connected to the density p of the fluid by means of 
the formu la 



(4) ( ) 
I+ 

a = P 
ao po 

where the nrbscripts 0 denote values of the variables in the undisturbed fluid. Let 
us point out here that the classical analyses of Riemann and of Earnshaw [ 18 ] , 
[ 191 were performed on the left-hand sides of equations (1) and (2); which are 
the exact equations for the propagation of sound waves of finite amplitude in a 
lossless medium. Riemann, in his analysis, transformed equations (1) and (2) to 
the frame of reference of characteristic coordinates r, s, defined by 

c 
r - = ,y++t 5=*-T. 

These coordinates are invariant in the sense that r is constant along wavelets such 
that 

dx 
dt= a+V; 

while s is constant along 

dx 
dt= - a+V. 

Let us note, that it is not the velocity in general of the wavelets, which is constant, 
but rather their speed equals that of the local speed of sound with respect to the 
fluid velocity 7 [ 10 ] . 

If we transform equations (1) and (2) to the coordinates defined by (5), we obtain 
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(4 rt 
l- ( 

Y+l 
-r + * s) rx = ;Cxx - sxx) 2 

St - 
( 

y-3r + 9s) sx = +(sxx - rxx)t 2 

where the parenthesis on the left hand side of (6) contains (a + o), and that on 
the left hand side of (7) is equal to (a - v). 

To quote Lighthi II: he observes that the variations of s are of second order in 
general; while we obtain from the Rankine-Hugoniot shock conditions the fact 
that across a shock wave the variations of s are only of third order. This will 
constitute our justification for taking s = 

“0 
a constant. Then, disregarding 

equation (7) , we obtain 

( r+l 
rt 

+ -r + Y -3 
2 2 “0 > 

zr 
rx = 2 xx - 

As we pointed out previously, the following approximate equality holds: 

Y+l -r + Y -3 
2 2 ‘0 

za+C. 

Thus, if we let 

r+ 1 Y -3 
V = -r + 

2 2so ’ 

then v is a certain excess velocity, such that the mainstream flow M can be 
decomposed into 



M = C+v, 

where C is constant. Under special circumstances this C is the local sound speed. 
At any rate, it is clear that all nonlinear and dissipational effects are borne by v , 
which, therefore, is the significant quantity here. Thus, using (10) and letting 

(11) 

we arrive at 

(12) 

$ = s , 

3 +vv =6v * 
X xx ’ 

the equation on which our analysis is based. 

As the final remark of this section, it might be worthwhile to point out that while 
we elected to quote Lighthill’s derivation in arriving at Burgers’ equation, we could 
just as well have used, as our starting point, the following set of equations : 

P, +(pv), = 0 

vt + vv + f P = 
X X 

viscosity term 

Here Co is an abbreviation for the equation of continuity; N S stands for the 
appropriately modified form of a Navier-Stokes equation, while St is the 
adiabatic equation of state. The letter P here means pressure ; all other symbols 
have their previous meanings. 
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The fact to observe here is that if in the N S equation above we take the viscosity 
term on the right-hand side the same as the right-hand side of (l), then the 
substitution of equation St into Co and into N S, coupled with a transformation 
similar to that defined by (4) , leads us immediately to the set (1) - (2). 



3.0 BURGERS’ EQUATION; GENERAL DISCUSSION 

In the preceding section we derived equation (12), 

(12) Vt 
+ vv = 6v 

X xx 

as the model on which our discussion will be based. Let us now examine this 
equation somewhat more closely, and also obtain its general solution. 

First of all let us try to gain an insight into the “content” of (12). If we integrate 
this equation with respect to x from some point x 

1 
to another point x 

2’ 
then inte- 

gration by parts and some rearrangements yield 

(13) r / 
x2 2 1 

2 (v ),dx +T v3 (x2,0 - 

x1 

= 6 v (x2,t) vx (x21 t) 7 v by ,t) vx b,,t) x2 
(vx)2dx . 

This, clearly, is a conservation of energy relationship. We must discuss it, because 
in .the course of the approximations that yielded (12), the original equation for the 
conservation of energy was simply dropped. [ 10 ] . 

If we go in (13) in order from term to term, we can interpret this equation as one 
stating that the total rate of change of kinetic energy in the system, plus the net 
flux of this energy out across the boundaries, exactly balances the rate at which 
work is done at the boundaries, less the total dissipation present. [ 7 ] . 

Such a statement is, of course, quite acceptable; in particular, if we note that (13) 
allows a steady state also, on any interval. It is obtainable by setting the right- 
hand side equal to 0. 

Let us now introduce a stream-function-like quantity cp into (12), defined by 

10 



. 

(14) 

We then obtain 

(15) 

V = qx ; qJ = q4xA. 

9 xt + *x+xX = sql xxx ’ 

a relation that can be integrated readily, and which yields the nonlinear diffusion 
equation in its classical form: 

2 

(16) +t + 
= &p 

xx * 

Let us now assume that (16) has a solution of the form 

(17) * = F 04 , 

where F is a function to be determined and h = h(x, t) is a solution of the 
Ii near heat equation, 

(18) ht 
= 6h 

xx ’ 

with the same 5 as in (12). Substitution of (17) into (16) yields 

(19) F’h, + +(F’ hx)i = b [F1hxx + F”hj . 

Here the primes denote derivatives with respect to h . We can rearrange (19) and 
obtain 

11 



W) F’ ht - 6h (F’)2 - SF” = 0. 
xx 

The first term on the left-hand side vanishes by virtue of (18). In the second term, 
since we are not interested in trivial solutions of the heat equation, we must have 

(21) + (F’)2 - 6 F” = 0 . 

This ordinary nonlinear differential equation can be solved quite easily. Its solution 
is 

(22) F = - 26 In h + c, + c2 , [ 1 
with c 

1 
and c 2 arbitrary constants. 

Let us note here that the appearance of cl in (22) is redundant; since if ‘; is a 

solution of (18), then so is ‘; + k, for any constant k. We then find, however, 
an important limitation on h , from (22). From a physical point of view, this 

limitation is quite important; it was first pointed out by Rodin in [ 201 ; although 

it was taken into consideration - mathematically - by Hopf [ 6 ] . Cole, on the 
other hand, seems not to have noticed it. This limitation is a restriction of the 

solutions h of (18) to those which are positive for all values of the variables, 

(23) h(x, t)> 0, - oo<x<o3, t> 0. 

Note that h > 0 at t = 0 also. We shall return to the implications of this 
positivity later. 

Combining now (14) and (22), we obtain the solution of (12) as 

12 



(24) 

h 
V = -26?, 

where h is any function satisfying (18) and (23) . 

It is to be noted that this entire derivation was merely a formal procedure. What we 
have shown here is that if Burgers’ equation has any solutions at all, then some have 
the form (24). That this equation actually does have solutions, that they are all of 
the form (24), and that, under appropriate initial conditions, they are unique, was 
shown by Hopf. [ 6 ] . The corresponding question of existence and uniqueness for 
the boundary value problem was solved by Rodin; see Appendix A. 

A question of great importance is the following: suppose we are given initial and/or 
boundary conditions for v. Then, since our solution will be obtained in terms of 
the solution of an associated linear heat equation (18), how do we “translate” the 
conditions given for v to h ? The answer to this question, with respect to a one- 
point boundary value problem, is not immediate. We shall give it later; it is also 
discussed, more extensively, in Appendix A. Because of the peculiar form of the 
solution (24), however, we can translate initial values from the v - plane to the 
h - plane quite easily. For integration and rearrangement of (24) yields 

(25) h(x, t) = G(t) exp V(Y, t) dy r 1 
where G and x o are quite arbitrary; except that G > 0 and x o < x . In fact, 

in forming the quotient (24), both of these cancel out. 

Now, however, if we specify an initial condition of the form 

(24 

* 

v(x, t) = v,(x), as t-O+, - (3~ <x < ar 

for v, we obtain the corresponding initial condition for h from (25) as 

13 



(27) h(x,O) = exp vo(y)dy t 1 - m<x<co 

where we combined, and then normalized, the inessential constants G (0) and x0 . 

14 



4.0 ON THE INADMISSIBILITY OF CERTAIN CONDITIONS 

While solutions as explicit as that of Burgers’ equation are as yet unavailable for the 
pair of equations (1) and (2), it is nevertheless well known that the limiting case 
E-O introduces discontinuities not only in the solution itself [ 6 ] , [ 21 ] , 
but also in the number of boundary conditions needed in order to obtain a unique 
solution [ 22 ] , [ 23 ] . It is natural to expect, therefore, that while the pair of 
equations (1) and (2), with e = 0 needs only two boundary conditions [ 22 ] , 
[ 241 , the single equation (12), with E > 0, needslso two of them [ 25 ] , [ 261 . 
The pair (1) and (2), we observe, should - and does - yiemnique solutions (in the 
small, to be sure) for conditions of the type 

(28) v (x0, 0 = v. (t), a b, toI = a0 (4 , 

provided we are seeking solutions for the case when E = 0. Similarly, the 
single equation 

(29) Vt 
+vv =o, 

X 

which is the left hand side of (12) , also possesses unique solutions of the boundary 
value problem defined by 

v (x 0’ t> = ,vo (t) * 

It is, therefore, perhaps not too surprising that, partly because of a certain inertia 
which developed in the course of using, for about a century, equations such as 
(29) with conditions of the type (30), there would be some who would attempt to use 
(30) with (12) also. Such an attempt is not a case of ignorance necessarily; for one 
has to consider the fact that usually it is not known, from the physical considerations, 
what the necessary boundary conditions are. However, if one reflects on the problem 
for a while, one recognizes that the case of a flow in a lossless medium is quite 
different - mathematically even - from that in a viscous one: for one condition in 
the former should suffice to describe the nature of the excitation applied to the system, 
but one condition cannot conceivably incorporate the effects of both excitation and 
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interaction of the (now viscous ) medium with this excitation. 

One would expect, therefore, that for equation (12), for instance, two conditions 
of the type 

(31) v (x 0' 0 = g(t), v(x, 0) = f(x) 

should be both necessary and sufficient. These two conditions describe the type of 
excitation applied to the system at the point x 

0 
at time t, and the initial state 

of the system. 

Conditions (31), mathematically speaking, are very nice. On physical grounds, 
however, two things are clear: First, the position of x0 should make no essential 
difference in the solution; and, second, these conditions (the first one is really 
problematic) should be physically realizable. 

Let us see now what type of treatment Burgers’ equation received in the literature so 
far. As we pointed out somewhat earlier, most of the investigators discussed initial 
value problems, defined by 

(32) v(x, 0) = f(x) . 

The use of such a condition can answer the question of what happens in a given system, 
whose initial state is known and on which no outside forces act. This is clearly an 
important problem, but gives no answers for situations where one has to contend with 
an excitation that goes on in time. In order to overcome this objection somewhat, 
several of the authors mentioned earlier considered equation (12) as one valid in a 
moving frame of reference. This alleviated the insufficiency in the mathematical 
model to a certain extent. The most radical step, however, was taken by Mendousse 

[ 911 who derived the equation which, in normalized form, can be written as 
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and where x is the physical coordinate, while T is retarded time. This equation, 
as we mentioned at some length in the Introduction, formed the basis for Blackstock’s 

analysis of the boundary value problem defined for V = ii(-r, x) by 

(26’) S(T, x) = vo(T) as X- o+, -oD<T<oO. 

Now, according to (24), the solution of (12’) is 

(24’) 

where 

(239 

h 
0 = - 25 + 

i =ii(T ,X)>O, -oO<T<CO, X>_o 

and where h satisfies a linear heat equation, 

(18’) ‘; 
X 

= ShTY . 

Furthermore, the boundary values, from (26’), are related by 

(27’) 

T 

‘VOW dT , 1 -co<r<co~ 
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We shall list now four objections, based on the preceding general discussion and some 
additional facts, to the statement of the problem and to its solution, as defined by the 
mathematical formulation containing primes (‘) . 

1 .I Physical intuition dictates (see preceding comments) that more than one 
condition be prescribed for a boundary (as opposed to an initial) value 
problem. 

2.1 It is impossible to realize, physically, a situation where the excitation 
is at one given point, say at x = 0. For, clearly, the exciting agent 
will be moving also, and it will have no fixed position; except perhaps 
in an average sense. 

3.) As is wel I known, [ 261 , [ 271 , [ 28 ] , the heat equation (18’) 
has unique and continuous solutions (ones we must have in order for them 
to serve as a building block in obtaining (24’) for conditions prescribed 
at some point x = x 

0’ 
only if x 

0 
= 0 ; or, in the most general 

case, when x0 2 0. This, however, seems to be an unacceptable 

limitation; for, as we mentioned previously, the location of the 
boundary point should make no difference; its prescription at x = 0 
should be merely a convenience. 

4.) The last, and probably most serious, objection that we shall raise here is 
based on the fact [ 28 ] , [ 29 ] , [ 30 ] that if one considers the 
solution h of (18’), (27’) at the point (TV , x0) in time-space, 

then i(-r, , o x ) depends on all boundary values. This, however, is - 

a preposterous proposition: we clearly cannot accept as fact a statement 
that the present of a physical situation depends, in whatever measure, on 
its future. 

Thus, what we need is the following: to’formulate a true boundary value problem, 
not subject to the criticism offered above, such that theanalytical tools now available 
will be sufficient for its application to Burgers’ equation (12). This we shall do in 
the next section. 
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5.0 PISTON DRIVEN PROPAGATION 

The physical framework for which we shall formulate our boundary condition is a pipe 
of arbitrarily large radius. One end of the pipe contains a piston, of a dimension 
appropriate to the pipe, while the other end extends to infinity. We prescribe the 
motion of the piston by noting that its position is a function of time: therefore, we 
have 

(33) X = g 0) * 

We also stipulate that the piston moves with at most sonic velocity, so that the fluid 
adheres to the piston and it has the same velocity as the piston, at all points of 
contact. If, therefore, we let v = v(x, t) denote the fluid velocity function, we 
can formulate our boundary statement as 

(34) vkl(tL t) = g'(t) - 

This then is an exact boundary condition. Let us point out here that it is not known 
whether the single, although complicated, condition (34) is sufficient for obtaining 
a unique continuous solution for (12). The answer is probably in the negative; for, 
as pointed out in connection with conditions (31), one ought to specify the initial 
state of the system also. Since, however, (34) is a condition on a curved boundary, 
it is very difficult to apply. At any rate, the two published attempts at its utilization 

[151# 1171 report very little success. We shall, therefore, resort to an 
approximation: by expanding (34) in a’Taylor series and using only the first two 
terms. While we chose to effect this expansion about the point x = 0, let us 
hasten to point out that’both here, and in all subsequent developments, this choice 
is mqrely a convenience; any other point could have been chosen. We shall write 
the expansion in the follow% two, essentially equivalent, forms: 

(3% v gw,t = ( > v(O,t) + g(t) v,(O,t) +g (-$ v(O,t) g”(t) - g’ (t) 7 - . 
n=2 

1 

1.9 



= do, t) + g(t) vJo,t) + + 
J 

g(t) y2 vxxx(dt) - y, t)dy = g’(t) . 
0 

Formu la (35a) is the classical Taylor expansion, while (35b) is an expansion with 
integral remainder. Note that for (35a) we essentially had to assume that v is 
analytic in x. However, we could avoid even the tacit assumptions inherent in (35b) 
concerning the third derivative of v, by writing it in .the form 

= v(o,t) + [““’ y vxx(g(t) - y, t) dy = g’ (t) . 

One can obtain an estimate of the size of the integral in (35~) by writing it in the form 

(36) ~gitiyvxx(d~~ - y,t)dy = dt)(g(t) - qO))vxx(g,W) s s2(t) vxx(gl(t),t) 

where g 
1 

(t) is some function lying in the band between x = g(t) and x = 0. 

Since we shall have a v such that v 
xx 

is continuous, and therefore bounded, 

formula (36) tells us that for piston oscillations of sufficiently small amplitude the 
integral in (35~) may be safely neglected. We can, however, get an even better 
result from (35b); through it, we can allow piston oscillations which are somewhat 
larger: for in an approximation of the type (36), applied to (35b), we would have 
the third power of g(t). This, on the other hand, would force us to assume third , 
order continuity far v. That we shall pursue the latter alternative is not as much 
a choice as it is a necessity, dictated by Burgers’ equation. For, as is shown in 
Appendix A, the prescription of the two conditions 
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(37) ~(0, t) = a(t), vx (0, t) = b(t) 

is both necessary and sufficient for the attainment of a unique solution, provided a(t) 
and b(t) satisfy certain regularity conditions. The reason that this mathematical 
necessity also constitutes physical sufficiency lies in formulas (35b) and (36), 
together with our remarks in Section 2.0 , preceding (8). The former two formulas 
show that assumptions (37) introduce an approximation of the third order; a fact 
which is analogous to the approximation used in obtaining (8) from (7). 
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6.0 GENERAL SOLUTION OF THE PISTON PROBLEM 

Under the expansion derived in the preceding section, we can now obtain the solution 
of 

Vt 
+ vv = 8v 6> 0 

X xx ’ 

with the boundary conditions 

(31) VW, 0 = a(t) , ~~(0, t) = b(t) . 

This solution (see Appendix A) can be written as 

[a(t) K(t)](“) x2n 

6” 
2n! 

[a(t) K(t)](“) x2n + ’ ’ 

Sn 
(2n + l)! 

n=O 

where 

(39) 

and where 

(4) 

K (t) = exp [A)- D(t) dt] 

D(t;6) = D(t) = $; a’Ft) 
I I 
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We might call (40) the “determinant of nonlinear diffusion”. The superscripts in 
parentheses in (38) denote differentiations with respect to t ; in (39) an indefinite 
integral is intended; and, in (40), the vertical bars designate a determinant. 

Let us make a few observations about this quite general solution. In the first place, 
we note that dissipation with time is still an exponential phenomenon, as in the linear 
case; except that here it is far from a simple exponential. As a result, there is a 
great deal of nonlinear interaction between the various harmonics; a fact which is 
well known already [ 1 ] , [ 7 1 , [ 12 1 , [ 13 ] . One can make, however, an 
important observation which was previously unnoticed: nonlinearity is not a result 
of the exponential nature of dissipation. This is significant, for it is anobserved 
fact that in transmission of waves in only slightly elastic media (e.g., ground waves 
resulting from an explosion), dissipation behaves in an inverse - power manner. 

Before we comment on formula (40), let us observe that it essentially represents 
energy: that applied to the system and the one already in it (viscous mechanism). 
This we can see if we note that the dimension of D is that of (velocity)2; for 

D(t) = a2(t) 2 - id l- = (velocity)2 . 
set set 

(We already noted, in connection with (3), that the dissipation constant 6 has 

dimensions ft2/sec .) NOW K (t) in (39) is a dimensionless quantity; however, we 
might term the integral appearing in it as the quantity measuring the impulse of 
interacting energy, 

11 E = I D(t) dt . 

This is a purely nonlinear quantity; it is a measure of the total impact of a force 
imposed on a viscous system. 

It is probably quite remarkable, that the solution of the nonlinear second order equation 
(12) depends so explicitly on the second order quantity (40). However, an even more 
striking feature of (40) is the direct coupling between the second order condition 
b(t) and the dissipation number 6 . From a priori considerations one could expect a 
coupling of this kind and, also, to find no direct connection between a(t) and 8. 
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But it can be ascribed only to a very fortunate circumstance that these relations are 
explicit and simple. 

We mentioned earlier the speculation concerning the validity of assuming that 8 is a 
constant. If (40) is any indication, as it probably is, we would conclude that here 
we have yet another motivation for trying to obtain solutions of (12) with a variable 
8; at least one which depends on time. 

Before we can continue our discussion of the solution (38), we must list the conditions 
under which it is valid. These are restrictions on the functions a(t) and b(t), in 
order for (12) to have a unique and twice continuous solution. We list them in an 
order which is the reverse of that in Appendix A. 

Condition 1: each of a(t) and D(t) is analytic for t > 0. This condition merely 
ensures the existence of appropriate solutions for the linear heat equation, 
from which solutions of Burgers’ equations are constructed. 

Condition 2: lim + [ dg a(r) K(r) dr = 0. 

t-+0 

Here we have a continuity requirement. Essentially, it states that the 
system contains no shocks initially. 

Condition 3: For any positive number a and at all times past the initial moment, the 
two expressions 

+ K(+) f &jl’t 4s a(r) K(r) dr 

0 1 
must be completely monotonic. (We have two expressions here, because 
of the f signs.) The content of this condition is that, somewhat loosely 
speaking, K must be a positive function with positive derivatives and 
that it has to dominate the rest of the terms in the bracket. (A function 

P(t) is completely monotonic if (-1)” P (‘) (t) 2 0 for n = 0, 1, 
2, . . . >. 

Our task is to specify from (35) the ~(0, t) and vx (0, t) that we intend to use 
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in (37). As we remarked earlier, we shall use formula (35b). Neglecting the integral 
appearing there, we obtain a radiation - type condition: 

(42) VW, t) + 90) vx(O, t) = g’(t) * 

We recall that g(t) and g’(t) are the piston displacement and the piston velocity, 
respectively. Because of the approximation employed, we are in fact free to choose 
either ~(0, t) or ~~(0, t) almost arbitrarily. The choice probably makes a difference 

in the final results; however, it is not known yet what the full implications are. The 
meaning of the qualifying adjective “almost” is that the degree to which either 
~(0, t) or v (0, t) can be chosen arbitrarily is limited by the requirements in 
conditions 1 ‘L 3. The choice we make is taking a vanishing ~(0, t): 

(4.3 VW, t) = cl(t) = 0 . 

This then implies that we must have 

(44) vx(% t) = b(t) = $$ . 

Then, from (39) and from (40) , 

W) D (0 = a2(t) - 26 b(t) = - 26 g’(t) 
S’ 

and 

(44 K (t) = exp [&--Wt] = &y . 
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That Condition 2 is satisfied and that Condition 3 is much simplified is quite 
immediate. However, we shall discuss this point more fully in the next section. For 
now, let us note that the solution, (38), also became simpler: we now have only two 
summations, one in the numerator and one in the denominator: 

W 

c 

lg-l (t)lb) x2n - 1 

(2n 

(47) v(x, t) = - 2 8 
n=l 

8” 

W 

g-l 0) + 
c 

[g-l (t) I(“) x2n 

6” 
(2n) ! 

n=l 

Let us note that in assuming (in 43) that ~(0, t) = a(t) = 0 we gained analytical 
simplicity, but we lost the possibility of a piston motion which passes through x = 0. 
This, however, is immaterial; the piston could be located anywhere. If, for some 
reason, piston motion with 0 values has to be considered, one simply does not use 
assumption (43); but for most cases of interest, (47) is just as general as (38); 
while, at the same time, much more easily analyzable. As a last remark concerning 
the relative importance of assuming piston motion which never passes through x = 0, 
let us observe that an object traversing the air (projectile, spaceship, etc.) can also be 
regarded as a “piston”; with motion that is not periodic, but rather monotonic. 

Finally, let us raise the following quest 
1 - 3 is not fulfilled? 

.ion: what happens if any one of Conditions 

In the case of Condition 1 the answer is not yet known. This is because Condition 1 
is a sufficient condition; it may not be necessary at all. The probable implication, if 
it is not fulfilled, is that the series used in (38) may not have meaning, for K may 
not be differentiable infinitely many times. 

Passing on to Condition 2: should it not be satisfied, we would conclude that the 
state of the medium at time t = 0 is one which sustains shocks; and, further, that 
these shocks emenate from the type of piston excitation applied. 

Finally, possibly the most important case that one has to consider is when Condition 3 
is violated. For this means that in the general solution, 
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v(x, t) = - 26 
hxb, t) 
h(x, 0 ’ 

the denominator is not positive for all (x, t) . Thus, at vanishing values of the 
denominator shocks appear in the medium. 

We have, therefore, a characterization - although only implicit - of those types-of 
piston behavior (described by the boundary functions a(t), b(t)) which are shock 
producing. While an explicit statement may also be possible, its attainment seems 
to be quite difficult: it would entail solving the two conditions in Condition 3 for 

classes of functions la(t)) I [b(t)) which will not yield complete monotonicity. 
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7.0 THE REDUCTION TO FAY’S SOLUTION 

The work of Fay [ 141 , to which we had referred already, certainly forms one of the 
most important milestones in the history of the propagation of waves of finite 
amplitude. However, since the appearance of his classical paper in 1931 no real 
advance has been made in modifying or in generalizing his results both qualitatively 
and quantitatively; although some important partial results were obtained ; for example 

1311 l 

In his paper, Fay was not concerned with piston motion, or indeed with any particular 
boundary value problem. Rather, he sought to determine the periodic elements of the 
most stable waveform for propagation of the type that we are considering. In the 
Lagrangian frame of reference that he had cast his equation in, his results could be 
expressed in the form 

(4) 

W 

P = a0 
c 

sin n X 
sinh- 

n=l 

Here P is pressure (because of the Lagrangian formulation), a0 a group of 

constants, T is a time-like quantity and X is the physical variable. 

The only attempt at generalizing this result with a start from Burgers’ equation was 
made by Blackstock; this, however, was not only fallacious - as we pointed out earlier - 
but also of a very limited scope. We deem it important enough, therefore, to demon- 
strate that the results achieved by Fay are but a special case of the solutions here 
presented. Because of the approximations that he employed and the very indeterminate 
nature of his boundary condition, Fay’s results can be expected to be a special case 
of ours only for a very special type of piston motion. Furthermore, since his results 
were given in terrns of pressure, while ours are in terms of particle velocity, the 
agreement is merely qualitative. This, however, is sufficient; because both of these 
functions are significant flow parameters. 

We can obtain Fay’s result from our solution (47) by assuming a piston motion g 
described by 

(49) 

W 

9 (0 = 1 + 2 
-k2t = 1 

-1 

e . 

k=l 
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Then (47) becomes, in successive steps, Fay’s solution (48): 

(50) v(x, t) ‘= - 2s & In 
{g:c + 2s e-k2t)%]j 

= - 26 &In g3 

i 
W 

= - 4s 
c 

(- 1)” 

n=l 

( X -t 
-I e 

2s 

sin (*) 

sinh n t 

Observe that the last formula here is not quite identical with that of Fay; the 
discrepancy is the factor (-1)” inside the summation. We could have obtained Fay’s 
result exactly, had we inserted this factor in the summation of (49); the reason we 
chose not to do so is our intention to stress the fact that what we have here is indeed 
a generalized qualitative and quantitative result. 
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A few words will be necessary to justify the development of (50). We start out with 
formula (47), written in a compact form, with g(t) given by (49). The first step 
is a slight rearrangement of this series, which, let us observe, is absolutely and 
uniformly convergent on t 2 0 ; and so are its derivatives. This allows us, in the 
next step, to perform the indicated differentiations term by term; and, after this, to 
change the order of summations. In this manner we obtain the cosine factor, and 
reduce the expression to a single sum. Then, using the terminology of [ 32 ] , we 
write the sum as the Jacobian e3 function which it defines; finally, from the same 
source [ 32 ] , we obtain the final series expression. 
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8.0 THE NATURE OF NONLINEAR DISSIPATION WITH TIME 

It is well known that, in the small amplitude theory, dissipation with time occurs in an 
exponential manner. Cole [ 7 ] and others found, to a first approximation, that 
this is essentially what happens in the finite amplitude case also. We will now show 
that the first approximation employed by these authors is indeed insufficient and that 
the nature of nonlinear dissipation with time is radically different from that in the 
small amplitude case. 

We shall base our discussion on formula (38), which is the general solution. Our 
boundary functi.ons we shall obtain from (35b), by assuming that the integral there 
is very small; so that we shall use 

(35b’) VW, t) + g(t) vx(O, t) = ‘91 (t) . 

Here, we recall, g(t) is the path of the piston and g’(t) is velocity; also, we 
denote, as before, ~(0, t) = a(t) and vx (0, t) = b(t). 

In order to obtain our results as rapidly and simply as possible, we shall employ 
techniques from operational theories. This wi II commence by a statement of 
definitions of certain irrational and transcendental differential operators; details 
concerning these can be found in textbooks on the subjects of operational calculus 
in general, and fractional integral operators in particular. 

(51) Definitions 1 .) For c > 0, 

I 
t 

(t - r)C - 
1 

D-C q(t) = 
r (4 

q(r) dr ; 
0 

DC q(t) = D” DC-” q(t) ; 

where (n - 1) is the largest integer contained in c 
and where D is the ordinary differential operator. 
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. , . . . . . ,,_ .., . . . . . . . .-- ..-. - _--- --.-- 

W 

2.1 cash xmq(t) =, 
x 

q(k)(t) x2k 
(2k)! 

k=O 

00. 

3.) sinh xfiq (t) P 
c 

Q&)(t) x2k + ’ 
(2k+l)! ; 

k=O 

where Q (0 = 4Yq(t) 

4.) e 
XdE 

f(t) z cash x mf(t) + sinh xaf(t) . 

Let us now assume the following relationship : 

(52) D11’2 (a(t) K(t)) = - 26 K(t) . 

We can write this out as 

/ 

t 
26b(t))dt] 

-- dr 
t 2 

= exp 
Sf( 

a (t) -25b(t))dt] , 

0 

which is a complicated integral equation. While nothing has been established 
concerning its solutions, we shall assume that they exist, even when subject to the 
restraints in the previous three Conditions and to (35b’). 

Under such a sweeping assumption, however, the entire expression (38) reduces to 
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(53) v b o, t) = - 26 & [In (exmK (t))] = 

= - 26 fl K(t) = a(t) K(t) , 

where the last equality was obtained by utilizing (52). 
last expressions here, written out as 

Let us repeat the first and 

(54) 

where, as before, 

v (x0, t) = a(t) exp a2(t) - 26 b(t)]dt , 

a(t) = ~(0, t) 

b(t) = ~~(0, t) . 

We shall confine outselves to some brief conclusions in connection with (54). Let us 
note, first of all, that while the nature of the diffusion with time is still exponential, 
it is nevertheless radically different from what we have in the linear case. There, 
time itself, as it were, was the diffusing agent, but here it is the total energy content of 
the imposed forces that is responsible for dissipation. This is because, essentially, 
the integrand in (54) is the square of the piston velocity. We also note that in the 
absence of some viscous mechanism dissipation becomes impossible; for then we would 
have an ever-increasing velocity. It should be pointed out, that such a conclusion is 
evidently much more reasonable than the one in the linear case, where we have an 
effect without a cause. 

Formula (54) shows also, from the factor a(t), that the basiccourse that dissipation 
takes depends on the piston velocity, whose amplitude is modulated by the effect of 
the total energy content of the system. 

Finally, let us note that (54) is reducible to theories of linear dissipation; for 
there one assumes that a(t) is very small, while b(t) is constant. Such an assumption 
reduces our formula to ordinary exponential dissipation with time. 
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9.0 THE TIME INDEPENDENT CASE 

The time independent solution of (12) is always of interest. Of even more interest, 
however, is that case of the time independent solution which arises from constant 
boundary conditions. The reason for this is the following. In the linear formulation 
of physical problems it is relatively easy to spot the physically significant parameters 
(Reynolds numbers, etc .). However, this task can be very difficult, if not impossible, 
in the nonlinear case, because of the complicated interaction of the harmonics, which 
is manifested in the complicated appearance of the various parameters. It is, 
however, possible to get some notion of the significance of the various parameters by 
analyzing the relatively simpler time independent situation. 

If we let v = 0 
t 

in (12), the equation becomes 

(55) vv = 8v 
X xx ’ 

an expression that can be integrated directly. The solution is 

(56) V = kl tan[-& (x + k2)] , 

where k 
1 

and k 
2 

are arbitrary real or complex constants. Expression (56) is the 

most general time independent solution of (12). 

Let us now assume that, in formula (4O), we are taking 

(57) a(t) = a0 , b(t) = b. , 

where a 
0 

and b 
0 

is each a constant. Then 
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(58) 

so that, from (39) , 

(59) 

D(t;b) = D(t) = ai - 26b0 = DO , 

K(t) = exp [&JD(t)dt ] = exp[g t] . 

This is the function we shall have to insert in (38) ; to prepare it for such use, let 
us form 

(W Ktn) (t) = ($r exp[-$ t] . 

Writing (38) in the somewhat simpler form of a logarithmic derivative, and using (60), 
we get the following: 

(61) 
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= - 25 & ln[cosh (;e)- $q sinh = 

- a cash ($ @)+ dqsinh ($.@) 

=@% ->cosh(tg)+ao sinh (f<$) 

Let us introduce now two characteristic constants cl , c2 , defined by 

(62) 
=2 

7 = 
- 2s -, c2 = 

aO 

Then the last formula of (61) can be written as 

(63) 

c sinh c x + cash c x 
V 

= 2c2s ’ sinh c2x + 
2 

c 
1 

cosf c x 
2 
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The nature of the constants c, , c2 , but particularly the latter, detelnyines the type 

of time independent solution that we can have. 

Before we can proceed, however, it is necessary to establish the connection between 

7’ c2 
on the one hand, and k 

1 ) k2 
of formula (56) on the other. 

To this end, let us rewrite (56) in the following form 

(64) v = k, tan [!?(x+k2)] = k, t;!tn;k; ‘;‘F\ Is 

26x 
tan - 

2s 

= k, sin(k x) + tan($)cos(-& x) 

COS(J& x) - tan (*)sin(-& x) = 

= 

k1 

- i sinh(& x i) + ton($)cosh($ xi) 

cosh($x i) +i tan( “iz2 )sinh (& xi) 

From (64) we obtain the desired identifications: 

(65) ic = 
kl k2 ( 1 kl 

1 
ctn 2s , c2 = i 7j-g . 
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Thus, we can take k T as completely arbitrary, but, because of (62), k 
2 

is given 

bY 

(66) k2 = F kl 
Arcctn - 

1 ao - 

This is indeed to be expected; for the time independent solution (63) is but a special 
case of the most general one, given by (56). 

Returning now to (62) : we can see from it yet another manifestation of the importance 
of 

(67) 
2 

Do = a0 - 2Sbo , 

as a critical quantity; for, clearly, its parity changes the nature of the solution (63) 
entirely. 

Expression (63) can be utilized in yet another way; through a parametric study, it 
can give us a qualitative estimate of the relative significance of the various 
parameters: changes in the value of the viscosity number 6 or the piston force input, 
characterized by the constants a 

0 
and b 

0 - 
We shall give some simple instances 

of such a study in the next section. 

38 



10.0 GRAPHICAL RESULTS 

The graphs that are given in this section are intended to convey qualitative 
conclusions only; they are not to be taken quantitatively at all. Our principal 
reason for reproducing them here is to give some limited graphical confirmation 
to some of our assertions in the report. Accordingly, we chose to illustrate such 
aspects as was possible to graph within the bounds of minimal computer use. 

Each of the graphs is obtained from formula (63), by use of (62) and (67). Thus, 
the graphs are those of time independent particle velocity. The actual method of 
graphing was somewhat unusual; the computer divided the vertical axis into uniform 
portions, different for each case, in accordance with the maximum and minimum 
values of (63) that it obtained for the domain in question. 

A description of the graphs, and some of the conclusions that can be drawn from 
them, are as follows: 

Figures la,b,c. The first three figures depict the variations introduced in the 
time independent solution (63) by changes in the viscosity number 6, for different 
values of the excitation aO bO . Note that in all three cases iinear increase in 
S produces a linear increase in v; an effect which is totally unrealistic. However, 
it supports our contention that 6 ought to be regarded as a function of time. 

Figures 2a, b. By substituting known values for viscosity number etc., into the 
relationships ( 3 ), ( 11) defining 6, and considering the approximations used 
in obtaining our solutions, it can be shown that our results are valid for a range of 
6 which is approximately 10 -3 5 6 5 2 x 10 -3. Thus, these figures show that 
under general excitation (a o f 0, b. # 0 1 th e solution is beginning to become 
meaningless on the two boundaries of this range; or, perhaps, they are significant 
only from a statistical point of view. 

Figures 3a, b. The only difference between these two figures and the preceding pair 
is that here we are taking b, = 0. Since b represents a second order effect, 

the change introduced into o’;r solution is quite remarkable; it now exhibits once 
again the type of deterministic behavior that one would expect. (We should note 
here that the discontinuities on these graphs are effects introduced by the computer, 
in changing from real to imaginary numbers.) 

Figures 4a, b. These two figures intend to illustrate the effect of considering a viscosity 
number which is too large. 

2 x lo- 3. 

As we pointed out previously, the upper limit for S is 

This is given on 4o. If, however, we increase this number by one half 
of an order of magnitude, the result deteriorates dramatically, as shown on 4b. 

Figure 5. If an unreasonably large value is given for S, then our results can have 
only a statistical interpretation. This figure is an extreme illustration of this 
observation. 
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DIRECTIONS FOR FUTURE RESEARCH 

Because of the wealth of new results presented in this Report it is quite difficult to make 
an immediate assessment as to which of these can be followed up most fruitfully, and 
what new directions of research are indicated in general. It seems clear, however, 
that an effort should bemade to solve exactly the piston problem, as defined by the 
boundary condition (34). A somewhat less ambitious, but nevertheless very important, 
task would be to solve Burgers’ equation with conditions (37), with an arbitrary initial .- 
wave shape. 

Another avenue of investigation that should be followed up lies in the basic result (38). 
This very important formula should be analyzed in an attempt to obtain a basic explicit 
description of the nonlinear interactions of various harmonics. Many approximate 
results are already available here, particularly in the Russian literature; but they all 
discuss the first two or three harmonics only. 

The fact that we were able to give an analytic description, by means of three conditions, 
of the eventuality of shocks, should definitely be made more precise. This would 
involve the task of obtaining that class of functions from these conditions, which are 
shock-producing. 

One of the most important results here is given by formula (54). A basic examination 
of this formula, together with its physical implications, would probably be a very - 
important contribution towards an explanation of the nature of diffusion. 

As a last general possibility we ought to mention here, that while our resu Its have 
demonstrable physical significance, their extension to a three dimensional framework 
would be most desirable. Furthermore, the ways of achieving such an extension are - 
quite clear and could be followed up very directly. 
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APPENDIX A 

A BOUNDARY VALUE PROBLEM FOR BURGERS’ EQUATION 

1. The nonlinear partial differential equation for v = v(x,t) 

(AlI Vt 
+vv =sv 

X xx 
,6>0 

first introduced as a model equation for certain aspects of one dimensional viscous 

flow by Burgers [ I;171 ] and often called Burgers’ equation, is one of the very 

few with the property that it is both closely related to the Navier-Stokes equations 

and its complete solution is known. This solution, obtained independently by J. Cole 

and by E. Hopf, (see Bibliography) is a function of an associated linear heat equation 

042) 8, = 68 
xx ’ 

where the 5 of (Al) is the same as that of (A2). In particular, 

8 

(A3) V = -26 + 

is a solution of (Al), if 0 is a nonnegative solution of (A2), provided certain continuity 

conditions are met by these functions. 

The function that transforms (Al) to (A2) is an exponential one, involving an integration 
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with respect to x. The necessity for positiveness in the associated heat equation is 

explained by the exponential nature of the transformation. The fact that this 

transformation also involves a partial integration with respect to x turns out to be 

important in treating the boundary and/or initial value .problems. Thus, it becomes 

very natural to consider an initial value problem of the type 

v(x,t) = f(x) as 
+ 

t-0. 

This was discussed extensively both by Cole and by Hopf. In proving the uniqueness of 

the solution thus found, Hopf made use of a theorem about nonnegative solutions of the 

heat equation, published by Widder in 1944 [. 1 5;s l 

A question of importance which arises in connection with (Al) is when the conditions on v 

are given on a line x = x o, and which are of the type 

(A4) v(xolt) = a(t) , vx(xo, t) = b(t) . 

The boundary value problem for (A2), as defined by (A4), is not a well posed one in the 

sense of Hadamard. Nevertheless, (Al) and (A4) together define a problem which, besides 

the intrinsic mathematical interest in it, is applicable both in magnetogasdynamics and 

in the statistical interpretation of (Al). 

To solve this problem, we shall make use of characterizations of positive solutions of the 

heat equation, given by Widder, which are different from the ones used by Hopf. Thus, 

the conditions for a unique solution v of (Al) under (A4),such that v CC2(x) in some 

region R of the x, t plane, will be formulated in terms of the concept of complete 

monotonici ty . 
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It will also be &own, that the crucial quantity in the solution of the second order equation 

(Al) is a second degree combination D of the boundary functions a and b , 

W) D(t,6) = D(t) = 
I 

a(t) 26 

b(t) a (+I I 

In the light of what is known about the viscous solutions of the Navier Stokes equations 

this form is not surprising. Therefore, some connection between 6 (which is,positive) 

and the second order condition v,(x o, t) = b(t) is to be expected. Nevertheless, it 

is interesting to see it exhibited in as explicit a form as given by- (AS). However, the 

particular relevance of this relationship appears only when one considers the solution 

as 6-O; a subiect we shal I not discuss here. 

2. We shall require four classes of functions in the sequel. It will be convenient to 

define them at this point. 

Definition 1. u(x,t) C H if and only if u satisfies the linear heat equation, 

6U 
Ut = xx ’ 

in a region R of the x,t plane, such that u C C3(x) ( and therefore at least 

C C’(t)) there. 

Note that contrary to the customary assumption of C’ (x) continuity, we require 

C3(x) here. The bar on H’ is a reminder of this; whenever only C2(x) 

continuity will be needed, we shall employ the class H. 

Definition 2. u(x, t) E: R+ if and only if u E R and u (x,t) > 0 for 
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(x,t) C R; 
+ 

similarly for the class H . 

Clearly, R+ isa proper subset of ii, and H+ C H also. 

Definition 3. f(y) c A M if and only if f is absolutely monotonic on an interval 

k, 4, 

f(“)(y) > 0 I fory c(c,d) and n = 0,1,2 ,....... 

Definition 4. f(y) c C M if and only if f is completely monotonic on an interval 

(c,d); that is, if f (-y) is absolutely monotonic on (-d, -c). 

This means, of course, that in the region of its complete monotonicity, a function f 

satisfies the inequality 

(-1)” f(“)(y) _) 0 

for each n . 

After these preliminaries, we can state the basic result of Hopf in the following form: 

Theorem 1. (Hopf, 2; 204 ) Th 1 1 e 0 owing two statements are equivalent: f II 

A) i) v is a solution of (1) in an open rectangle R of the x,t plane 

ii) v e C2(x) in R 

B) i) For t > 0, there exists a function @ of the form 

@= C(t) exp 
I 

v(x,t) dx 1 , such that 

ii) Q C iJ+ 

The proof of these statements can be easily given by subjecting (1) to the transformation 

defined by 
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Part B of Theorem 1. gives the explicit form of the exponential transformation, referred 

to ear! ier . On examining it, one sees immediately how the condition v(x,O+) = f(x) 

is “translated” to 0. Our next theorem wi II contain in it that form of the solution of the 

heat equation, which lends itself to the problem defined by(A4). We shall alx, fix x 
0’ 

as x 
0 

= 0 ; this will entail no essential loss of generality. 

Theorem 2. Let p(t) and q(t) be analytic functions for t > 0. Then the conditions 

i) 9(x,t)E H on - co<x<oo, t> 0 

ii) ex(O, t) = p(t) e(0, t) and exx(o, t) = q(t) 8 (0, t) 

are necessary and sufficient for 8 to have the representation 

(A6) B(x,t) = c 2 kxp ] ;“Iq dt!l 
(“) 2” 

37 + 
“=o 

+g ( 
pexp [ Slqdt]l(“) x2”+’ 

“=O s” (2n+ 1) ! 

where C is an arbitrary constant. Here the superscripts.denote derivatives with respect 

to t. 

To prove this, let w(t) E COD be an arbitrary function, positive for each t > 0. Then, 

since solutions of the heat equation are of COD in t for fixed x, we can write in 

place of ii) above: 

(A7) 

I 

w, t) = w(t) 
ii) e,col +) = d+) w(t) 

exx(o, +I = q(t) w(t) 

For a particular w, the heat equation, together with the first two conditions of (A7), has 
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a unique solution (see D.V. Widder, [ 4; 2921 ), of the form 

w W 

(A8) ecx,t) = c 

,b) x2n 
- I + x 

x2n+ l (pw)(“) 

“=o 6” 
2n . 

n=O 6” (2n+l)! 

which, for any fixed real x is an analytic function of t in t > 0, and, for fixed 

t > 0, is entire in x. Therefore, term by term differentiation is justified and we 

obtain from (A8) 

(A9) 

8 (0,t) = w(t) 
ex (Ott) = p(t) w(t) 

8 (W) = xx $ w’(t). 

The first two entries of (A9) coincide, of course, with those of (A7). To complete the 

agreement in the third lines also, we must have 

(Alo) w(t) = Cexp [6Iq(t)dt] , 

where C is an arbitrary (positive) constant. Using (AlO) in (A8) we obtain (A6), which 

then proves the necessity. 

The proof of sufficiency is immediate. Clearly, (A6) is C2(x) and it satisfies the heat 

equation for -w < x < w, t> 0. This can be checked by term-by-term differentiation, 

justified above. We similarly obtain the conclusions that the conditions ii) are also 

satisfied. 

3. Our solution v will be constructed of a function similar to (A6). It is now 
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necesscrry to ensure that it be positive. To do that, we shall employ a characterization 

of nonnegative solutions of the heat equation, satisfying the conditions 

e(o,t)=f(t), ex(o,t) = g(t), as given by Widder I 1 4;279 and mentioned 

previously. Eventually, this will yield the entire C2(x) solution set of (Al) satisfying 

v(O,t)=a(t), v,W,t) = b(t), and no other functions. We state this characterization 

as 

Theorem 3. Let B(x,t)c H on -ao<x<w and t>O, suchthat B(O,t)=f(t), 

ex(w) = g(t). Then the three conditions 

t 

B : lim + g(ddr = 0 
t-o 

are necessary and sufficient for 8 (x, t) c H+on this range. 

A trivial example satisfying conditions A, B is one involving the functions g(t) = 0 

and f(t) = t 
- l/2 

. However, it is worthwhile to look at the example where 

g(t) = eat , a # 0 

with f as yet unspecified. We shall firsttake the case a > 0. Then part B of 

Theorem 3 becomes 
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lim 
t-o+ 

t 
-eardr = lim 1 

4-- 
t-r 

t-o+ 
IF 

t [+* eat] = 

= lim + +I L-’ [ -*]I 
t-0 

= :Fo+ e eat erf ($7)= 0, 

so that this part is satisfied. The * in this notation means convolution and L 
-1 

designates an inverse Laplace transform. An examination of this evaluation shows, 

however, that while it is possible to satisfy part A of the theorem also, it would involve 

taking for f functions that are much too complicated for the purposes of an examp le. 

We pass on therefore, to the case a < 0. One then obtains 

lim t-o+ &e 
ar 

-$*e 
at 1 = 

If- -at 

= lim lim 2 

t-o 
+ 

t-o+ 

The integral in part A becomes 

If we note now that this expression is bounded, and at u = t it is absolutely monotonic, 

together with the following facts 

i) t 
-l/2 

EC M , and t-l CCM, for t > 0 
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ii) If f, CA M on D, and f2 CC M on D2 , then f, (fJ CC M 

on D2n R 
1 , 

where R , is the range of f 
1’ 

iii) f, CA M and f2 CA M imply (f, +f$ CA M ; similarly for C M; 

the same holds for products. 

then we see that our choice for an appropriate f is much easier. In fact, it has to be 

absolutely monotonic and bounded below in a certain manner. 

4. Let us now consider a solution v = v(x, t) of (l), satisfying conditions A of 

Theorem 1, such that v(O,t) = a(t) and vx (0, t) = b(t). This v defines a function 

@ = @ (x, t), according to the second part of that theorem, such that 

(114 @(x,t) = C(t) exp [ - &Iv(x,t) dx] . 

Denoting now 

exp 1 &~v(x,t) dx 1 
x=0 

= v,(t) , 

we can write 

(134) @(Ott) = C(t) v,(t) 

and we know that @ (0, t)> 0 for t > 0. Furthermore, we can differentiate (11 A) to 

obtain 

(13A) @x(w) = - +g a(t) C(t) v,(t) 
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1111.1 I ,,,1.1.~~.111..1.~.~1 . . . , . . . ,,... . _ ___---_- -.-.-- - 

and 

(14A) @,,W) = -A& C(t) v,(t) 1 a2W - 26 b(t)] = -!- 

4s2 
C (+I v,(t) D (+I 

Combining (i2A), (13A) and (14A), we have 

(1W 

ax(O,t) = - & a(t) Q (Ott) 

@xx’ot t) = -“2 D(t) @ KU) 
45 

If now each of a(t) and D(t) is analytic for t > 0, we have, by Theorem 2, that 

(MA) * (x,t) = c 

I 

c 

w (exp 1 &IDdt)) (n) 2” 

n =O 6” ** - 

W 1 

x 

(a exp 1 TID d tl ) (“) 1 2n+l 
X -- 

26 
n=O 6” (2n+l) ! 

with C arbitrary # 0. 

Recal I ing now that 

and writing this in the form 

where c is an arbitrary positive constant, we shall utilize Theorem 3 in connection 
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with the function F = \,@ - e ). The boundary values.for Fx and @ are the same * d 

for F and @ the relation is 

F (0,t) = @(O,t) - c 

Letting now 

K(t) = exp 
1 

25 / D(t)dt t 1 
where D(t) is given by (5A), we state our main result as 

Theorem 4. Suppose that, for some s > 0, 

i) [- c+ K(+)+ &[^ dz a(r)K(r)dr]-$ < CM for t > 0 

ii) lim a(r)K(r)dr = 0 
tmo 

iii) each of a and D is analytic for t > 0. 

Then 

w -26 K(“)(t) ;22’ -,l , + 2 [a(t) K (t) ] (“) x2” 

n=l 5” “-~ l “=O 
” T-T 

(17A) v = - 
W 

c 
[a(t) K(t) ] (‘) x2” + ’ 

“S) 6” 
(2n 
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is a solution of (1) such that, for t > 0, -w< x < w 

(a) v cC(2)(x) 

b) vtO,t) = a(t), vxtOtt) = b(t) 

(c) v is unique. 

That v is unique, we can see from the fact that Q is unique under the stated 

conditions, up to a nonzero multiplicative constant. This, however, cancels out in 

the ratio, rendering v completely unique. 

5. Examples. Solutions of nonlinear partial differential equations which are 

independent of time are always of some interest. Thus, in the case of (l), we obtain 

the simplest such 

It is of the form 

w3N 

solution from the time-independent solution of the heat equation. 

-26 c, 

vl= , 2 cx+ c 

where c 
1 

and c 
2 

are arbitrary constants. Another solution of 

by solving (1) directly, with vt = 0. This will have the form 

(T9A) v2 = 
k, tan 

kl 
---&x+k2) . 1 

Here,also, k, and k2 are arbitrary (real or complex) constants. 

this type is obtainable 

An interesting form of the time independent solution (19A) can be obtained from (17A). 

One way of doing it is assuming that each of a(t) and b(t) is a constant, 
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a(t) = a0 , b(t) = b. . 

Then 

Do = D(t) = a2(t) - 28 b(t) = a: - 26 b. . 

In the general case Do # 0, so that 

K(t) = exp [&ID(t)dt]= exp [$ t + k] 

where k is arbitrary. Using this value of K in (17A), simplifying and writing the four 

series in terms of the appropriate hyperbolic functions we obtain 

(20A) 
c1 

sinh c x + cash 
2 

c x 
2 

v3 = aoC 1 sinh c 
2 

x + c 
1 

cash c x 
2 

where 

c2 

J 

D - 

c’ = - 26 ag ’ 

c2 = 6° 

This, then is the third type of stationary solution. It is, of course, reducible to (19A) ; 

in fact, letting 

ic = 
kl k2 ( ) kl 

1 
ctn -7jg- , c2 = i -7jg 

in (19A) we obtain (20A). 

As a final note, it will be worthwhile to point out the importance of the positive constant 
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c in Theorem 4. Let us suppose that we are given the boundary conditions 

v(O,t) = 0 = vx (Ott). Then, of course, we would expect to obtain the solution v E 0. 

Under these zero initial conditions D(t) = 0 itself, so that K(t) = K. , an arbitrary 

constant. That it is not completely arbitrary, however, we can see from condition i) 

of Theorem 4. ; in particular, it tells us that K. must be positive. We get this because 

of the presence of c there ; otherwise a nonnegative K 
0 

would do also. However, an 

examination of (1.7A) shows that only K. > 0 will give the expected v = 0 solution. 
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APPENDIX B 

ON A PHENOMENOLOGICAL FAUX PAS OF FINITE AMPLITUDE 

In recent years a very fruitful method of analyzing propagation of waves of finite 

amplitude in viscous media came to the fore. It employs, as the descriptor of such 

phenomena, a time dependent, one dimensional nonlinear partial differential 

equation of the second order, first introduced by Burgers 
1 

in 1948 as a model for 

the description of turbulence. This equation bears a very strong resemblence to the 

one dimensional Navier-Stokes equations with linear dissipation. Its most 

important virtue, however, is that its complete and explicit solution is known. This 

was published in 1950 and 1951, by E. Hopf’ 
3 

and J.D. Cole , respectively, 

who obtained their results independently of each other. 

Since the number of physically significant nonlinear partial differential equations, 

4 
for which explicit solutions are known, is very small , and since the solution of 

Burgers’ equation represented an important step forward in the field of continuum 

mechanics, workers in many fields attempted to make use of it. This was and is 

being done in several ways: by using the equation in its original form, and solving 

boundary and/or initial value problems for it 5; by a reinterpretation of the 

dependent and/or independent variables, so that the equation will be the culmination 

of a sequence of rational approximations of a higher order equation or system of 

6 
equations ; 

7 
and by the generalization of the equation itself . 
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The history of modern science is replete with examples of scientists possessing great 

physical insight, coupled with a lesser degree of mathematical acuity. In fact, many 

results, now deemed classical, had very little mathematical justification; or, indeed, 

were based on erroneous arguments. In such cases the historical course of events 

seems to have supplied, at a later time, the necessary mathematical arguments which 

vindicated the physical results from a formal point of view also. Thus, the critique 

we shall here give ought to be so viewed; particularly since the conclusions of those 

who based their work on assumptions we shall show to be insupportable, are certainly 

interesting. 

I. BURGERS’ EQUATION 

Burgers’ equation, as originally given, can be written as 

(Bl) 
Vt 

+vv =sv 
X xx 

Here v = v(x, t) is a certain excess velocity (turbulence), t is time, x the 

8 
physical coordinate and 8 a positive constant, being a measure of dissipation . 

The subscripts denote partial derivatives with respect ot the symbol involved. The 

solution of (Bl) is given by 2f 3 

W) v(x, t) = - 28 
hxb, t) 
h(x, 0 
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where h itself is any positive solution of the associated linear heat equation 

(83) ht 
= 8h 

xx - 

Because of the peculiar form of the solution (82) - which, incidentally, is a 

purely accidental feature - the most “natural” problem to consider is an initial 

value one, defined by 

(B4) v(x, 0) = f(x) . 

The problem defined by (Bl) and (B4) could be construed, for instance, as one 

describing the decay of a wave in a pipe of infinite length, with no external 

excitation, given the shape of the wave at time t = 0. 

In order to obtain the value of v from (B2), we must first “translate” the condition 

(84) to the heat equation (83). This can be done by integrating relation (82) and 

exponentiating it, to obtain 

(B5) h (x, t) = exp -[&JX dy, t) dy] 

Then, from (84) and (85) we obtain the initial condition h = h(x, t) must satisfy, 

in order for it to serve as a building block in the desired solution (BZ); it is 
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(W h(x, 0) = exp [- &-Jx f(y)dy ] = F(x) 

Those solutions of the heat equation (B3) which we shal I need here can all be 

written in the form of the classical Poisson integral, 

(87) J 00 
h(x, t) = k (x -yt t) F(y)dy . 

-a0 

Here k(x, t) is the source solution of (B3), while F comes from (B6). Formulas 

(B2), (86) and (87) constitute the complete “recipe” from which one can obtain 

the desired solution. 

II. TIME DEPENDENT EXCITATION 

A problem which, from a practical point of view, is more important than that 

defined by (84) is a boundary value problem. For instance, we might inquire what 

the flow regime will be if, at some point x = x0 in our infinite pipe, a piston is 

set into motion. If the piston motion is described by x = g(t), we could make 

appropriate,assumptions to claim that at a certain distance from the piston, at x = x 
1 ’ 

the fluid particles behave according to the rule v(xl , t) = g(t). This then could 

formu late a boundary value problem. 

In a 1953 paper9, in an attempt to explain the nature of nonlinear dissipative 
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distortion of sound waves of finite amplitude, J. S. Mendousse introduced a 

“universal” equation for the particle displacement u . Having eliminated the 

dimensional constants and having performed a slight transformation on the variables, 

he gave the equation as 

w3) U 
- 2UXT 

+ 4u u 
T-r x xx - 2uTxx+ 2uTxxx = O 

For our purposes it w ‘II be sufficient to note only that T here is a time-like and X 

a space-like variable. Mendousse then proceeded to simplify this equation in a 

very ingenious - and physically impeccable - manner, to obtain the two equations 

(B9d 

and 

(BW 

8 
T 

- 2eex = exx 

ex + 288 = 8 
7 TT - 

The quantity 8 in these is defined by u 
X 

= 8 . He then stated that (B9a) 

suitable for shock-wave problems, with an initial condition of the type 

(BlOa) 0(X, 0) = F(X) ; 

is 

while (B9b) should serve as a descriptor of phenomena in which there is “motion 

without beginning not end”, for boundary conditions at X = 0, of the type 
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(Blob) e(o, T) = 9(T) . 

Mendousse then gave the solution of the problem defined by (B9b) and (Blob). He 

also seems to have implied that this solution is similar to, or is an extension of, the 

celebrated results that R.D. Fay lo had obtained in 1931. 

In 1964 D .T. Blackstock 
11 

presented a thorough-going analysis of the groundwork 

that Mendousse had laid, also based on (B9b) and Blob). In fact, he presented 

explicit - although only asymptotic - solutions, which are certainly more general than 

that obtained by Fay. 

It is our contention that these results of Mendousse and of Blackstock, qua solutions 

of (B9b) and @lob) , are physically meaningless. 

Ill. THE PHENOMENOLOGICAL CONTRADICTION 

The philosophical foundation on which we are basing our rejection of the solutions of 

Mendousse and of Blackstock is the principle of determinacy in physical events. By 

this we mean that in order to work in the customary framework of science, one must 

assume that the cause of present events lies in the past; and that the future has no 

effect on the present. 

If we assume that (B9b) and (Blob) constitute the valid statement of a problem, then, 
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as has been shown by Hopf 2, the only solution is given by (B2), (B3), (B6) and (87). 

In particular, we shall have that 

W’) e(x, T) = - 
hT (X, T> 
,,(x t) 

I 

where 

(B3’) hX = hT T , 

and where 

( w 

with h given by 

h(0, T) = exp - / g U) d U) 1 = G(T) , 

(87’) h(X, T) = Jm k(-r - T, X) G(T) dT . 
-03 

This is, however, totally unacceptable. For, since T is a time-like variable here, 

the function g(T) - and ipso facto, G (r ) - contains in it the time history, past 

present and future, of the excitation (piston) applied to the medium. By integrating 

this, as we have to in (B7’), we are essentially summing up the contributions of this 

excitation for all time. 
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If we now take a fixed point (X 
0‘ 

TV) in space-time, and consider g(X 
0 

, 7 
0) 

, 

we see that the value of the function depends not only on what had happened 

previously (times T, < T,), but also on the entire future (TV > TV). On the 

grounds that we mentioned before, we must reject such a possibility 
12 

. 

It is perhaps necessary to point out why, on the other hand, the formulation given 

by (B9a) and (BlOa) can be considered reasonable. If we apply the argument given 

above to these, we come to the conclusion that g(X 
0 

, T o ) depends on the values 

of the initial function f at every point of the X axis. This implies the instantaneous 

transmission of effects from point to point; a conclusion which, while unrealistic, 

is nevertheless not repugnant 
13 

. 

IV. CONCLUSIONS 

We d.emonstrated that it is impossible to accept the framework given by Mendousse 

and utilized by Blackstock in obtaining their results. However, the remarkable 

qualitative agreement of their solutions with that of Fay cannot be lightly 

dismissed. 

To be sure, this agreement is subject to some suspicion. The reason for this is that 

both the equation used by Fay and Burgers’ equation, have a strong connection with 

the linear heat equation (83). Rational approximations, employed both by Fay and 

by Blackstock, would therefore tend to go in a direction where the simplified 
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expressions can be handled on better-known mathematical ground; in this case, the 

realm of the solutions of the heat equation. Specifically, Blackstock had utilized 

certain properties of the Jacobian Theta and Zeta functions (first connected to 

Burgers’ equation by Cole3). As is well known, the former are solutions of (B3), 

while the Zeta functions are the logarithmic derivatives of the Theta functions. On 

the other hand, the basic linearization procedure employed by Fay, and the fact 

that he specified no particular conditions but only sought the periodic terms of a 

stable wave form, led to classes of solutions which, in certain limiting cases, are 

also solutions of the heat equation. One would conclude therefore that the 

intersection of the two sets of solutions is the place to which the path of least 

resistance leads. This does not mean, however, that the set composed of the union 

less the intersection of the two solution sets is empty, or even small; indeed, the 

contrary is true. 

Thus,, a new approach to Burgers’ equation is indicated; one which will treat a true 

boundary value problem, without using the artifice employed by Mendousse. One 

has to keep in mind, however, that much as the solutions change discontinuously 

as one poses from the lossless case (described, for instance, by v + vv 
t X 

= 0) 

to the viscous alternative (B2), the number of necessary boundary conditions also 

changes from one to two. This of course is quite reasonable. In a lossless medium 

one condition should suffice to describe the nature of the excitation; but such a 

single condition cannot conceivably incorporate the effects of both excitation and 

interaction of excitation with the viscous mechanism. 
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What Blackstock and Mendousse were nevertheless able to show was that if a true 

boundary value problem is solved for Burgers’ equation, it s!..ouId be similar to Fay’s 

result. Because of some recent rewlts obtained by Rodin 
14 

, this view is in fact 

vindicated. We shall not give the details here; they will appear, in all their 

generality, in a different framework. 

Fay’s solution can be written as 

(Bll) 
W 

U = c 
x 

sin n (wt - (d/S ) 
stable wave 0 sinh n (a0 + a x -f-- 

n=l 

Here C 
0 

is a group of constants, w is a frequency number, So the ambient 

sound speed and a0 , a, are phase constants. The general solution we referred 

to above, on the other hand, can be written in the form 

(B12) 1 W 

v(x, t) = - 2s &In 
c 

[P-l (t) ] (n) x2n 

gn 
(2n)! 

n=O I 

Here P(t) is the path of the piston; the superscripts in parentheses indicate 

derivatives. (B12) will reduce to an expression similar to (Bll) if we take 
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(813) p (t) 

for then it becomes 
15 

(Bl4) 

= 

[ 

1 +2 
W 

z 
n=l 

(-1)” 
2 1 

-1 
-n t 

e 

sin (nx/S1’2) 
sinhnt 

n=l 

Thus, expression (812) is the one that can be considered the analogue of Fay’s 

result (Bll); it differs from the latter in that it is exact and by virtue of the fact that 

it is a descriptor not only of the stable wave forms. Formulas (813) and (B14), on 

the other hand, show that it is not sinusoidal excitation that leads to a sawtooth-like 

curve; but rather an excitation of monotonic type. The final conclusion is that 

by consideration of a properly posed problem one obtains a generalization of much 

greater scope than that available through an artifice. 
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FOOTNOTES 
(to Appendix B) 

1. 
J. Burgers, Ad vances in Applied Mechanics, Academic Press (1948) 

2. 
E. Hopf, Commun. Pure Appl . Math. 3,201 (1950) 

3. 
J.D. Cole, Quart. Appl. Math. 9, 225 (1951) 

4. 
W .F. Ames, Nonlinear Partial Differential Equations in Engineering, 

Academic Press (1965) 

5. 
Because of the very extensive literature on Burgers’ equation and on its 

application, we shall cite in this footnote (and in the next two also) only 

representative samples of the directions in which work has been done. Thus, 

the initial value problem was treated in ;he papers of Hopf and of Cole, A 

boundary value problem for curved boundary is discussed by J. Burgers in 

Nonlinear Problems of Engineering, edited by W .F. Ames, Academic Press 

(1964), pp. 123-137. 

6. 
M. J. Lighthill, Surveys in Mechanics, edited by G.K. Batchelor and 

R.M. Davies, Cambridge University Press, Cambridge, England (1956) 

7. 

pp. 250-351. 

W .F’. Ames, Ref. 4, discusses several examples. 

8. 
Actually, it has been shown that 6 measures the effect of dissipation versus 

nonlinearity. See for example D.T. Blackstock, J. Acoust. Sot. Am. 

36, 534 (1964), and Z.A. Gol’dberg, Akust. Zh. 2,235 (1956) and 3,329 (1957) 

[English transl.: Soviet Phys. - Acoust. 2,346 (1956) and 3,329 (1957)] . 
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9. 
J.S. Mendousse, J.Acoust. Sot. Am. 25,51 (1953) 

10. 
R. D. Fay, J. Acoust. Sot. Am. 3,222 (1931) 

11. 
D.T. Blackstock, J.Acoust. Sot. Am. 36, 534 (1964) 

12. 
Actually, one could mention several other reasons which make the formulation 

unacceptable. For instance, in a boundary va.lue problem of this type the 

location of the boundary should make no essential difference; the choiceof 

X = 0 ought to be merely a convenience. It is well known, however, that 

(B9b) and (Blob) cannot be solved for a boundary condition at x 1 < 0. 

Because of its intimate connection with the linear heat equation, Burgers’ 
13. 

equation actually “inherited” this property. A discussion of the question of 

the instantanwous transmission of effects in the case of the heat equation can be 

found, for example, in R. Courant and D. Hilbert, Methods of Mathematical 

Physics, Vol. II, Interscience Publishers (1962). 

14. 
E.Y. Rodin, A Boundary Value Problem for Burgers’ Equation, to be published. 

15. 
Cole obtained essentially the same series as the one given in (B14). The 

important difference, however, is that in the case of Cole the exact result of 

an initial value problem was approximated ; while (B14) is an exact solution 

(of the boundary value problem) as it stands. 
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